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PREFACE 

The work described in this report covers the contract period of July 1995 through April 

1996. This work was performed by Applied Research Associates (ARA), Inc., under Contract 

F08635-93-C-0020, Subtask 8.03, U.S. Air Force AL/EWQ, Barnes Drive, Suite 2, Tyndall Air 

Force Base, Florida. During the course of this study, there were two project officers, Major 

Mark H. Smith and Captain Jeff Stinson, BSC. This work was performed under the technical 
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EXECUTIVE SUMMARY 

Funnel-and-gate systems are used for in situ groundwater remediation. To design such 

systems in a cost-effective manner, it is necessary to perform extensive calculations to determine 

the optimum system dimensions. For performing a good first-order design, a statistically sound 

model was developed. 

Using the multistage design of experiments to perform a limited number of FRACT3DVS 

computations and stepwise regression, simplified equations are developed to predict the behavior 

of a funnel and gate system. The four factors included in these equation were identified to be 

highly significant in predicting behavior of the funnel and gate system. The equations will be 

useful for evaluating different funnel and gate designs and to make quick predictions in the field 

(a full FRACT3DVS calculation can take 1-2 days.) 

The following conclusions assume the accuracy of the FRACT3DVS code and the 

comprehensiveness of the four parameters and two response measures studied. (1) Collectively, 

the first three FRACT3DVS parameters, Kaquifer/Kgate, wf/df, 2*wf/wg, are particularly 

important in predicting the funnel and gate's operation, especially because of the product of wf/df 

and 2*wf/wg. (2) It is possible to predict the operation of the funnel and gate system for ground 

pollution treatment with a high degree of accuracy, using a small, fast-running code on a PC. 
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SECTION I 

INTRODUCTION 

OBJECTIVE 

The objective of this effort is to assess the relative contributions of nine variables that 

affect the FRACT3DVS simulations of a funnel-and-gate system and model those effects in a 

second, fast-running code. 

BACKGROUND 

FRACT3DVS is a large computer program used to simulate groundwater flow. A funnel- 

and-gate system has been devised to treat soil pollutants in situ, that is, in the field. 

FRACT3DVS can estimate the amount of pollution captured and flow rates in a funnel and gate 

system. However, the code is too computer intensive (each run can take 1-2 days on a work 

station) to be used for the parameter studies needed to design an optimal funnel and gate system. 

Hence, a simpler, faster running code is required. 

SCOPE 

The basic scope is to perform FRACT3DVS simulations with different values of the input 

variables. Using these results we can fit a simple function (i. e., a response surface) that attempts 

to match the FRACT3DVS output for each set of inputs. Each run of FRACT3DVS takes 1-2 

days on a minicomputer or work station and has to be performed off-site by an expert in the use 

of the code. To get the most information in the least number of runs, it was decided to use a 

multistage design of experiments. This multistage approach allows us to reduce the number of 

variables and, therefore, reduce the required number of FRACT3DVS runs. The multistage 

approach involves a set of "screening runs," followed by additional runs to better define the 

response sensitivities. "Analysis of variance" (1-3,12) (ANOVA), a statistical method to 

measure the relative importance of terms in linear models, was used first to find significant linear 

effects in the screening runs, then later to find overall models of the funnel-and-gate system 

response measures. Two of the code's output measures were chosen to produce response surface 

models of the code: relative area and relative flow, in that order of importance. 



SECTION II 

STAGE 1 -- SCREENING 

A complete, quadratic response model in nine variables has 55 terms and would need at 

least that many runs in order to estimate all of the parameters. Since any significant high order 

terms are more likely to involve variables that have significant linear effects than those that do 

not, it is useful to try to reduce the number of variables via screening runs and an ANOVA of the 

data generated by the screening runs. 

A Plackett-Burman (4,5,10,12) experimental design was used for the screening stage of 

initial runs of the code. Plackett-Burman designs are 2-level designs, run at typical high and low 

values for each variable. For k variables, Plackett-Burman designs require 4*(int(k/4)+l) runs, 

i.e., the least multiple of 4, greater than k, which in this case meant 12 runs. The subsequent 

ANOVA needs at least an additional run, with all variables held at their nominal or central 

values, to create some model error to use for comparison purposes in the significance tests of the 

linear response terms. Hence, 13 runs of FRACT3DVS are necessary for the nine factors 

considered for that screening analysis. 

The screening design above was computed for the purpose of identifying important linear 

effects of the nine FRACT3DVS parameters in the code's simulation of a funnel and gate system. 

An advantage of the Plackett-Burman design used for the initial screening phase of this design is 

that it requires fewer than the usual 2*k+l runs needed for a "one at a time plus center point" 

design, which would have been 19 runs for this case. 

Accordingly, the first experimental design resulted in the X matrix shown in Table 1. 

The X matrix defines the series of runs given by the Plackett-Burman design with center point, 

for an initial screening of the nine FRACT3DVS parameters. The results ofthat screening are 

used later to compute the next series of runs to perform. Note, the matrix is coded so that - 

l=minimal, 0=medial, and l=maximal values. 



TABLE 1. FIRST SCREENING DESIGN. 

Hydraulic Funnel Funnel Funnel Funnel Gate Gate Dynamic 
Run Kh Gradient Width Depth Thickness Kh Height Width Reaction 

1 
2 -1 .] _1 _1 

3 -1 -1 _ 1 _1 _1 

4 -1 -1 "1 "1 _ | 
5 -1 -1 _1 _1 

6 -1 _1 _1 

7 -1 -1 _1 

8 -1 -1 -1 _] 

9 -1 -1 -1 "1 
10 -1 ■ 1 -1 -1 
11 -1 -1 -1 _1 • 1 

12 -1 -1 -1 -1 -1 -1 -1 "1 _1 

13 0 0 0 0 0 0 0 0 0 

As it turned out, the matrix X given in Table 1 was not entirely representative of the 

runnel and gate process to be simulated by the FRACT3DVS code. It was not physically 

consistent to combine high and low values for all pairs of parameters, which is to say that some 

pairs were correlated. 

After a review of this matrix and of the process to be simulated, the nine original 

parameters were reduced to four independent parameters. The ratio of Kh to funnel Kh became 

"Kaquifer/Kgate". The ratio of funnel width to runnel depth became "wf/df." The ratio of 

2*funnel width to gate width became "2*wf/wg," and hydraulic gradient was now to be called 

"del_h/del_l." Funnel thickness was deemed to be minimally important to irrelevant. Gate 

height was to be the same as runnel depth, and dynamic reaction, a chemical reaction, was not to 

be considered. 

A new Plackett-Burman design matrix X, shown in Table 2, was then computed. Note, 

the nine runs here happen to be the same as 2*k+l, the number of runs required in a one-at-a- 

time analysis. Plackett-Burman's advantage of fewer number of runs occurs when there are more 

than 4 variables. Nevertheless, P-B designs have another advantage over one-at-a-time; variables 

vary throughout the entire set of runs, each variable simultaneously in the presence of each 

other's variation, which can produce better models. 



After the nine new screening runs had been completed the results were analyzed by 

ANOVA. Relative Area could be represented with a high degree of accuracy as a simple linear 

model in the first three of the four new parameters ~ so accurate that the model explained 97.66 

percent of the variation of Relative Area in the screening stage (and which can be expected to 

change with new, augmenting data). 

TABLE 2. PLACKETT-BURMAN INITIAL SCREENING DESIGN WITH CENTER POINT 
FOR SENSITIVITY ANALYSIS OF 4 FRACT3DVS PARAMETERS. 

Run Kaquifer/Kgate wfi'df 2*wf/wg del_h/del_l Note: 

1 4 2.0 10 0.005 (Case 1) 
2 1 0.5 5 0.001 P-B 
3 1 0.5 20 0.010 P-B 
4 1 4.0 5 0.010 P-B 
5 1 4.0 20 0.001 P-B 
6 20 0.5 5 0.010 P-B 
7 20 0.5 20 0.001 P-B 
8 20 4.0 5 0.001 P-B 
9 20 4.0 20 0.010 P-B 



SECTION III 

STAGES 2, 3, AND 4 

Augmentation of the screening design was reported in "stages" of new runs of decreasing 

necessity or priority, as shown in Table 3. Stage 1, the screening design was "D-optimally" 

augmented into a second, higher resolution design, able to estimate second order terms of the 

significant variables identified by the ANOVA. The D-optimality criterion (5-8) seeks to 

maximize |X'X|, the determinant of the design's information matrix. For this operation, the non- 

significant variables are held at their nominal values. 

In general, the second, augmenting stage can be divided into second and third stages that 

first use a 2-level then a 3-level design with ANOVAs after each before producing the final 

response surface. Here, the low number of variables allowed calculating all augmenting runs 

after one ANOVA. Stage 2 allowed estimation of all 2nd order terms of the 3 significant 

variables evident in Stage 1. Stage 3 allowed estimation of the remaining 2nd order terms 

involving the 4th, so far non-significant variable, "grad h" (del_h/del_l). Stage 4, corresponds to 

a term for the product of all 4 parameters and ensures a degree of an error lack-of-fit and avoids 

the problem of an "over-determined" model. 

Normalizing transformations of the data can be employed to improve model fit, or 

transformations can be used to guarantee appropriate bounds on the response model's estimated 

values. Here, log transforms kept the output values positive. 

The seven augmenting runs (10-16) are shown in the augmented X matrix above. A full, 

quadratic, response surface model was fit to the 16 FRACT3DVS runs, but the analysis based on 

that model was unreliable since that model's parameter estimates were not, themselves, reliable. 

A reduced, quadratic, response surface model was required, and one was found using stepwise 

regression. Its ANOVA table follows showing the model form and its improved parameter 

estimates. 

The reduced model has higher-order terms in second and third parameters only, wf/df 

and 2*wf/wg, so only those two needed to be coded for a response surface analysis. (The two 

coding formulae are shown in Table 4.) An analysis of the surface shows a conditional 



maximum at wf/df = .3191066 and 2*wf/wg = 4.2285113, shown in Figure 1. The response 

surface analysis tells us we can maximize the Relative Area measure of performance by 

designing the funnel and gate system to have parameters as close to these values as is practical to 

do so. "Canonical" and "ridge" analyses (3,9-12) were two procedures used to find this 

singularity point. 

TABLE 3. AUGMENTED, D-OPTIMAL, SATURATED, 3-LEVEL DESIGN + ERROR. 

Stage Run Kqauifer/Kgate wOT 2*wf/wg del h/del 1 Relative Area 

1 1 4 2.0 10 0.005 0.280 

2 1 0.5 5 0.001 0.379 

3 1 0.5 20 0.010 0.320 

4 1 4.0 5 0.010 0.250 

5 1 4.0 20 0.001 0.155 

6 20 0.5 5 0.010 0.457 
7 20 0.5 20 0.001 0.353 
8 20 4.0 5 0.001 0.285 
9 20 4.0 20 0.010 0.182 

2 10 4 4.0 20 0.005 
11 20 4.0 10 0.005 

3 12 1 4.0 5 0.001 
13 4 0.5 10 0.010 
14 4 0.5 20 0.001 
15 20 0.5 10 0.001 

4 16 1 0.5 5 0.010 

The first and fourth FRACT3DVS parameters, Kaquifer/Kgate and del_h/del_l, have 

monotonically increasing, positively correlated effects on relative area, so no global maximum 

exists. The higher they go, the greater relative area will be. 
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Figure 1.   Quadratic Response Surface for Relative Area in Two FRACT3DVS Parameters. 
(The two other parameters are held at the means of their natural logs.) 

The multiple linear regression model for the natural log of relative area and its estimated 

coefficients are shown in Table 4, the ANOVA table for the model. Table 4 also contains the T- 

statistics associated with each model parameter. The square of the T statistic is a good measure 

of the relative importance of each term in the model. This measure is proportional to the 

variance of the variable in the term and the square of the term's estimated coefficient. The only 

terms allowed in the model were those that passed the T test at a 0.05 level. 



TABLE 4. LINEAR MODEL'S DEPENDENT VARIABLE: LN (RELATIVE AREA). 

Analysis of Variance (measures and tests for goodness of fit) 

Source 

Model 
Error 
C Total 

Root MSE 
Dep Mean 
C.V. 

DF 

7 
8 

15 

0.01799 
-1.25228 
-1.43669 

Sum of 
Squares 

1.66818 
0.00259 
1.67077 

R-square 
Adj R-sq 

Mean 
Square 

0.23831 
0.00032 

F Value 

736.242 

0.9985 
0.9971 

Prob>F 

0.0001 

Parameter Estimates (with significance tests) 

Parameter Standard T for HO: 
Variable DF Estimate Error Parameter=0 Prob > |T 

Intercept 1 -1.155717 0 03121130 -37.029 0 0001 
lnl 1 0.049583 0 00379650 13.060 0 0001 
cd2 ' 1 -0.288244 0 00470598 -61.251 0 0001 
cd3 1 -0.167119 0 00527006 -31.711 0 0001 
ln4 1 0.015426 0 00448120 3.442 0 0088 
cd2cd3 1 -0.062542 0 00539519 -11.592 0 0001 
cd2cd2 1 -0.073530 0 02414147 -3.046 0 0159 
cd3cd3 1 -0.031231 0 01271146 -2.457 0 0395 

Name Definition 

lnl 
cd2 
cd3 
ln4 
cd2cd3 
cd2cd2 
cd3cd3 

In(Kaquifer/Kgate) 
coded ln(wf/df)   = ( 
coded ln(2*wf/wg) = ( 
ln(del_h/del_l) 
cd2 * cd3 
cd2 * cd2 
cd3 * cd3 

ln(wf/df) 
ln(2*wf/wg) 

346574 
302585 

1.039721 
0.693147 

Note: A 95% confidence bound for a value of Relative Area predicted by this eq. 
is (predicted value *or/1.0423575), where 1.0423575=exp(t(8,.975)*Root MSE). 



SECTION IV 

RELATIVE FLOW 

Since all analysis and modeling decisions had been based on ANOVAs of relative area, 

the concern was expressed as to how to transform the results to a response model of relative 

Qgate (a measure of relative flow). Relative Qgate tended to vary with relative area but not 

exactly, as shown in Figure 2, which displays a cubic trend with 95 percent bounds for the trend 

line. 

O 
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Figure 2. Relative Qgate Trend in Relative Area. 

As with relative area, a full, quadratic, response surface model was fit to the 16 

FRACT3DVS runs, but an analysis based on that model was unreliable since that model's 



parameter estimates were not, themselves, reliable. A reduced, quadratic, response surface 

model was required, and one was found using stepwise regression. The model for relative Qgate 

fit the data at least as well as the model for relative area. This was fortuitous, since the decisions 

as to which variables to concentrate on were based on modeling relative area. The flow model 

ANOVA, Table 5, follows showing model form and coefficient estimates. As in Table 4, model 

terms were selected at a 95 percent confidence level. 

The reduced model has higher order terms in all 4 FRACT3DVS parameters and linear 

terms in the 1st and 3rd parameters only, Kaquifer/Kgate and 2*wf/wg. Such a model cannot be 

formally analyzed for regions of optimality by the SAS response surface procedure available and 

was not attempted herein. Running this model with a fine 4D mesh is another way to find 

regions of optimality, and the results can be presented graphically. This could be a topic of some 

future investigation, but we know relative area and relative flow increase together. 

TABLE 5. LINEAR MODEL'S DEPENDENT VARIABLE: LN(RELATIVE QGATE). 

Analysis of Variance (measures and tests for goodness of fit) 

Source df 
Sum of 

Squares 
Mean 

Square F Value Prob>F 

Model 
Error 
C  Total 

8 
7 

15 

2.5887C 
0.00152 
2.59022 

0.32359 
0.00022 

1494.499 0.0001 

Root  MSE 
Dep Mean 
C.V. 

0.01471 
-1.37525 
-1.06995 

R-square                 0.9994 
Adj   R-sq                 0.9987 

Parameter Estimates (with significance tests) 

Variable Definition df 
Parameter 
Estimate 

Standard 
Error 

T  for HO: 
Parameter=0 Prob>|T| 

intercept 
Inl                   In(Kaquifer/Kgate) 
ln2                   ln(wf/df) 
ln3                   ln(2*wf/wg) 
ln4                   In(del  h/del  1) 
lnlln2            Inl   *   ln2 
lnlln3            Inl   *   ln3 
In21n3            ln2   *   ln3 
In31n4            ln3   *   ln4 
Inllnl            Inl   *   Inl 
In41n4            ln4   *   ln4 

1 
1 

1 

1 
1 
1 
1 
1 
1 

-0.484772 
0.332230 

(0.) 
-0.575412 
(0.) 
-0.013979 

0.015540 
-0.090229 
-0.024498 
-0.059383 
-0.003971 

0.05102584 
0.01618190 

0.04126705 

0.00339552 
0.00468619 
0.00243975 
0.00697718 
0.00415047 
0.00135214 

-9.501 
20.531 

-13.944 

-4.117 
3.316 

-36.983 
-3.511 

-14.308 
-2.937 

0 
0 

0 

0 
0 
0 
0 
0 
0 

0001 
0001 

0001 

0045 
0128 
0001 
0098 
0001 
0218 

Note: A 95% confidence bound for a value of Relative Flow predicted by this eq. 
is (predicted value *or/1.0354014), where 1.0354014=exp(t(7,.975)*Root MSE). 
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SECTION V 

SUMMARY AND CONCLUSIONS 

Using the multistage design of experiments to perform a limited number of FRACT3DVS 

computations and stepwise regression, simplified equations are developed to predict the behavior 

of a funnel and gate system. The four factors included in these equation were identified to be 

highly significant in predicting behavior of the funnel and gate system. The equations will be 

useful for evaluating different funnel and gate designs and to make quick predictions in the field 

(a full FRACT3DVS calculation can take 1-2 days.) 

The following conclusions assume the accuracy of the FRACT3DVS code and the 

comprehensiveness of the four parameters and two response measures studied. (1) Collectively, 

the first three FRACT3DVS parameters, Kaquifer/Kgate, wf/df, 2*wf7wg, are particularly 

important in predicting the funnel and gate's operation, especially because of the product of wf/df 

and 2*wf/wg. (2) It is possible to predict the operation of the funnel and gate system for ground 

pollution treatment with a high degree of accuracy, using a small, fast-running code on a PC. 

11 
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